(Luminy–HughWoodin:UltimateL(I)TheXIInternationalWorkshoponSetTheorytookplaceOctober4-8,2010.ItwashostedbytheCIRM,inLuminy,France.IamverygladIwasinvited,sinceitwasagreatexperience:TheWorkshophasatraditionofexcellence,andthistimewasnoexception,withseveralverynicetalks.Ihadthechancetogiveatalk(availablehere)andtointeractwiththeotherparticipants.Thereweretwomini-courses,onebyBenMillerandonebyHughWoodin.Benhasmadetheslidesofhisseriesavailableathiswebsite.WhatfollowsaremynotesonHugh’stalks.Needlesstosay,anymistakesaremine.Hugh’stalkstookplaceonOctober6,7,and8.Thoughthetitleofhismini-coursewas“Longextenders,iterationhypotheses,andultimateL”,Ithinkthat“UltimateL”reflectsmostcloselythecontent.ThetalkswerebasedonatinyportionofamanuscriptHughhasbeenwritingduringthelastfewyears,originallytitled“Suitableextendersequences”andmorerecently,“Suitableextendermodels”which,unfortunately,isnotcurrentlypubliclyavailable.ThegeneralthemeisthatappropriateextendermodelsforsupercompactnessshouldprovablybeanultimateversionoftheconstructibleuniverseL.Theresultsdiscussedduringthetalksaimatsupportingthisidea.UltimateLAdvertisementsREPORTTHISADILetδbesupercompact.ThebasicproblemthatconcernsusiswhetherthereisanL-likeinnermodelN\\subseteqVwithδsupercompactinN.Ofcourse,theshapeoftheanswerdependsonwhatwemeanby“L-like”.Thereareseveralpossiblewaysofmakingthisnontrivial.Here,weonlyadopttheverygeneralrequirementthatthesupercompactnessofδinNshould“directlytraceback”toitssupercompactnessinV.Recall:WeuseP_δ(X)todenotetheset\\{a\\subseteqX\\mid|a|<δ\\}.Anultrafilter(ormeasure)UonP_δ(λ)isfineiffforall\\alpha<λwehave\\{a\\inP_δ(λ)\\mid\\alpha\\ina\\}\\inU.TheultrafilterUisnormaliffitisδ-completeandforallF:P_δ(λ)oλ,ifFisregressiveU-ae(i.e.,if\\{a\\midF(a)\\ina\\}\\inU)thenFisconstantU-ae,i.e.,thereisan\\alpha<λsuchthat\\{a\\midF(a)=\\alpha\\}\\inU.δissupercompactiffforallλthereisanormalfinemeasureUonP_δ(λ).Itisastandardresultthatδissupercompactiffforallλthereisanelementaryembeddingj:VoMwith{mcp}(j)=δ,j(δ)>λ,andj‘λ\\inM(or,equivalently,{}^λM\\subseteqM).Infact,givensuchanembeddingj,wecandefineanormalfineUonP_δ(λ)byA\\inUiffj‘λ\\inj(A).Conversely,givenanormalfineultrafilterUonP_δ(λ),theultrapowerembeddinggeneratedbyUisanexampleofsuchanembeddingj.Moreover,ifU_jistheultrafilteronP_δ(λ)derivedfromjasexplainedabove,thenU_j=U.AnothercharacterizationofsupercompactnesswasfoundbyMagidor,anditwillplayakeyroleintheselectinthisreformulation,ratherthanthecriticalpoint,δappearsastheimageofthecriticalpointsoftheembeddingsunderconsideration.Thisversionseemsideallydesignedtobeusedasaguideintheconstructionofextendermodelsforsupercompactness,althoughrecentresultssuggestthatthisis,infact,aredherring.Thekeynotionwewillbestudyingisthefollowing:Definition.N\\subseteqVisaweakextendermodelfor`δissupercompact’iffforallλ>δthereisanormalfineUonP_δ(λ)suchthat:P_δ(λ)\\capN\\inU,andU\\capN\\inN.ThisdefinitioncouplesthesupercompactnessofδinNdirectlywithitssupercompactnessinV.Inthemanuscript,thatNisaweakextendermodelfor`δissupercompact’isdenotedbyo^N_{mlong}(δ)=\\infty.Notethatthisisaweaknotionindeed,inthatwearenotrequiringthatN=L[\\vecE]forsome(long)sequence\\vecEofextenders.TheideaistostudybasicpropertiesofNthatfollowfromthisnotion,inthehopesofbetterunderstandinghowsuchanL[\\vecE]modelcanactuallybeconstructed.Forexample,finenessofUalreadyimpliesthatNsatisfiesaversionofcovering:IfA\\subseteqλand|A|<δ,thenthereisaB\\inP_{δ}(λ)\\capNwithA\\subseteqB.Butinfactasignificantlystrongerversionofcoveringholds.Toproveit,wefirstneedtorecallaniceresultduetoSolovay,whousedittoshowthat{\\sfSCH}holdsaboveasupercompact.Solovay’sLemma.Letλ>δberegular.ThenthereisasetXwiththepropertythatthefunctionf:a\\mapsto\\sup(a)isinjectiveonXand,foranynormalfinemeasureUonP_δ(λ),X\\inU.ItfollowsfromSolovay’slemmathatanysuchUisequivalenttoameasureonordinals.Proof.Let\\vecS=\\left<S_\\alpha\\mid\\alpha<λight>beapartitionofS^λ_\\omegaintostationarysets.(WecouldjustaswelluseS^λ_{\\le\\gamma}foranyfixed\\gamma<δ.RecallthatS^λ_{\\le\\gamma}=\\{\\alpha<λ\\mid{mcf}(\\alpha)\\le\\gamma\\}andsimilarlyforS^λ_\\gamma=S^λ_{=\\gamma}andS^λ_{<\\gamma}.)Itisawell-knownresultofSolovaythatsuchpartitionsexist.Hughactuallygaveaquicksketchofacrazyproofofthisfact:Otherwise,attemptingtoproducesuchapartitionoughttofail,andwecanthereforeobtainaneasilydefinableλ-completeultrafilter{\\mathcalV}onλ.Thedefinabilityinfactensuresthat{\\mathcalV}\\inV^λ/{\\mathcalV},contradiction.Wewillencounterasimilardefinablesplittingargumentinthethirdlecture.LetXconsistofthosea\\inP_δ(λ)suchthat,letting\\beta=\\sup(a),wehave{mcf}(\\beta)>\\omega,anda=\\{\\alpha<\\beta\\midS_\\alpha\\cap\\betaisstationaryin\\beta\\}.Thenfis1-1onXsince,bydefinition,anya\\inXcanbereconstructedfrom\\vecSand\\sup(a).AllthatneedsarguingisthatX\\inUforanynormalfinemeasureUonP_δ(λ).(ThisshowsthattodefineU-measure1sets,weonlyneedapartition\\vecSofS^λ_\\omegaintostationarysets.)Letj:VoMbetheultrapowerembeddinggeneratedbyU,soU=\\{A\\inP_δ(λ)\\midj‘λ\\inj(A)\\}.Weneedtoverifythatj‘λ\\inj(X).First,notethatj‘λ\\inM.Lettingau=\\sup(j‘λ),wethenhavethatM\\models{mcf}(au)=λ.SinceM\\modelsj(λ)\\geauisregular,itfollowsthatau<j(λ).Let\\left<T_\\beta\\mid\\beta<j(λ)ight>=j(\\left<S_\\alpha\\mid\\alpha<λight>).InM,theT_\\betapartitionS^{j(λ)}_\\omegaintostationarysets.LetA=\\{\\beta , )